Против часовой стрелки

Фрагмент книги Полины Лосевой о теориях старения

Против часовой стрелки

Старение и смерть — темы, традиционно популярные у публики, а потому на этом поле пасется бесчисленное множество проходимцев разного рода. Есть в этом и часть вины популяризаторов науки, ведь хороших, понятных и научно корректных книг по теме совсем немного. Но теперь — на одну больше.

В издательстве «Альпина нон-фикшн» вышла книга биолога и научного журналиста Полины Лосевой «Против часовой стрелки: Что такое старение и как с ним бороться». Автор последовательно раскладывает по полочкам все, что знает наука о старении, обращаясь в том числе к самым последним научным исследованиям. Одна из глав посвящена разбору современных теорий старения, ведь единого мнения об этом естественном процессе у ученых, как ни странно, до сих пор нет. Мы публикуем отрывок из этой главы, об одной из таких теорий — генетической.

…Как-то со школьниками в лагере мы ставили пьесу про призраков, которые терроризировали английское аристократическое семейство. Нам тогда казалось, что мы невероятно разошлись — в спектакле были и родовые проклятия, и безумные танцы, и любовные интриги, — но когда потом я стала расспрашивать зрителей об их впечатлениях, то с удивлением обнаружила, что больше всего им запомнились не пляски призраков, а часы. У нас действительно посреди сцены стояли большие самодельные часы, стрелки которых сначала показывали традиционный файф-о-клок, потом медленно ползли к полуночи, а потом внезапно начинали творить невесть что: идти в обратном направлении или бешено вращаться. Оказалось, что зрителей сильнее всего заинтересовало, кто сидел в часах. Разгадка была проста: в часах сидела бабушка-призрак, которая должна была отыграть свою короткую роль только ближе к концу действия, но заработала себе аплодисменты еще до выхода на сцену.

Среди теорий старения есть и такие, которые предполагают, что у процесса изнашивания организма есть начальник или план, по которому оно происходит. Иными словами, сторонники этих теорий убеждены, что без демонической бабушки внутри часов, стрелки нашего старения не сдвинутся с места. Я собирательно называю их теориями запрограммированного старения.

На первый взгляд они могут показаться самыми зловещими из всех, поскольку подразумевают, что в угасании и смерти организма кто-то напрямую заинтересован. Но при ближайшем рассмотрении они оказываются самыми оптимистичными: ведь если во всех наших бедах виновата одна-единственная программа, то ее можно выключить, и старение выключится вместе с ней. Проблема только в том, что мы все еще не знаем, существует ли она на самом деле.

Идею о том, что смерть может быть результатом работы некой программы, привнес в научную дискуссию в 1882 году немецкий зоолог, эмбриолог и эволюционный биолог Август Вейсман. Он рассудил, что смерть могла бы быть полезна, с одной стороны, чтобы избавлять популяцию от больных и слабых особей, освобождая место для более сильных, а с другой стороны, чтобы ускорять смену поколений. Так начала свою жизнь эволюционная теория старения.

Геронтологи до сих пор ее развивают, находя все новые и новые плюсы для организмов в программе старения и смерти. Эти плюсы могут выглядеть, например, так. Каждому виду в отдельности выгодно эволюционировать быстро. При этом многие черты, которые дают преимущество отдельным особям, развиваются долго и стоят дорого — это, в частности, интеллект и иммунитет. Несмотря на то что частично они определяются генами, основную роль в обоих случаях играет жизненный опыт. А поскольку опыт копится со временем, долго живущие особи будут всегда иметь преимущество перед молодыми и поколения начнут сменяться медленнее. Единственный способ этого избежать — включить программу старения, которая компенсирует преимущество долгожителей изнашиванием их тел.

Еще один плюс программы старения, возможно, заключается в том, что она помогает организму распределять энергию в изменчивых условиях. Программа работает только тогда, когда ресурсов много, и у животного есть возможность размножаться и быстро уступать место новому поколению. В условиях дефицита энергии программа выключается: если ресурсов для размножения недостаточно, значит, и уступать место в популяции некому. Таким образом, теория запрограммированного старения вобрала в себя теорию «тела на выброс»: чем лучше условия жизни, тем больше возможностей для размножения, тем больше энергии отбирают половые клетки и тем меньше ее достается «соме», то есть остальному телу, которое постепенно деградирует.

Следы действия зловещей программы можно найти на любом этапе: возникновение повреждений, борьба с ними и накоплением мусора, выбор стратегии ремонта и так далее.

О том, как такая программа могла бы реализоваться, пишут далеко не все приверженцы этой теории. Но сам факт ни у кого из них не вызывает сомнений, и программу смерти они считают логичным продолжением программы развития организма. Здесь, правда, стоит вспомнить, что развитие у всех происходит одним и тем же путем, за редкими исключениями, а вот стареют люди по-разному, становясь все более гетерогенными по всем параметрам. Но сторонники программы старения готовы защищать свою точку зрения с помощью цифр: хоть половое развитие и запрограммировано, говорят они, но относительный разброс по времени начала менструаций у девочек — 8–13%. Прекращение менструаций — один из первых признаков старости, и здесь разброс по времени похож — 7–11%. И для времени смерти различия не намного выше — 16–21%. Так может быть, старение не так уж и гетерогенно и укладывается в одну программу?

Непосредственно механизм запрограммированного старения предложил в 1997 году Владимир Скулачев,  специалист в области клеточного дыхания и один из создателей биоэнергетики, научной дисциплины, которая занимается обменом энергии в клетке. Скулачев обратил внимание на то, что у одноклеточных организмов — в частности, дрожжей — тоже встречается запрограммированная смерть, а механизмы ее схожи с апоптозом , клеточным самоубийством в организме млекопитающих. В обоих процессах участвуют белок р53, а также антиоксиданты и шапероны (белки — упаковщики белков). Поэтому Скулачев предложил считать гибель одноклеточных дрожжей и гибель отдельных клеток в многоклеточных организмах единым явлением и назвал его феноптозом.

Когда феноптоз не работает, клетка может справиться с поломками и свободными радикалами и остаться в живых. Когда феноптоз запущен, механизмы ремонта выключаются и начинают накапливаться те самые повреждения, которые приводят в конечном счете к старению или апоптозу клеток, а затем и к смерти организма. В этой теории находится место и онкологическим заболеваниям. Как только механизмы ремонта повреждений ослабевают, клетки перерождаются в опухолевые и убивают организм даже в отсутствие апоптоза. Поэтому Скулачев считает старение и рак следствиями одной программы и называет рак быстрым феноптозом, а старение — медленным, постепенным.

Программа старения и смерти, по Скулачеву,  — это проявление альтруизма. Слабые организмы уступают место своим сильным собратьям, которые несут более выигрышные в данных условиях мутации. Эту логику можно применить не только к одноклеточным организмам, но и к крупным животным. Скулачев приводит в пример тихоокеанского лосося, который умирает сразу после того, как размножился, и тем самым, вероятно, освобождает место для развития своих потомков, а своим телом подкармливает беспозвоночных, которые тоже впоследствии станут пищей для следующего поколения.

Чтобы доказать, что программа старения действительно существует, необходимо привести примеры обратного — то есть случаи, в которых она не работает и старость не наступает. Если принять теорию феноптоза, то таких примеров должно быть немало: ведь механизмы клеточного ремонта очень разнообразны, и заставить их работать бесперебойно можно множеством способов. Первым в списке примеров у Скулачева значится, конечно, голый землекоп,  чьи клетки гораздо более устойчивы к апоптозу , чем клетки других грызунов или человека, вероятно, благодаря поддержке длинных нитей гиалуроновой кислоты в межклеточном веществе. Вторыми следуют летучие мыши, которые, судя по всему, «сломали программу» ближе к корню и постоянно производят антиоксиданты. Что характерно, ни землекопы, ни летучие мыши, ни другие животные, которых относят к пренебрежимо стареющим, практически не болеют раком — и это подтверждает идею Скулачева о том, что рак и старение — явления одного рода.

Наконец, если программа существует, то ее можно выключить искусственно. Например, самцы австралийской бурой сумчатой мыши, как и лососи, погибают вскоре после спаривания. Оказалось, что для того, чтобы вызвать у них скорую смерть, достаточно феромонов самки, а если кастрировать или изолировать самцов, то можно продлить им жизнь до уровня самок. Того же эффекта можно достичь и посредством манипуляций с генами: выключения одного-единственного гена бывает достаточно, чтобы продлить жизнь дрозофилы или нематоды C. elegans в 4–10 раз. С позвоночными, правда, такого эффекта достичь не удается — даже мыши, на которых уже перепробовали все, пока дольше четырех лет не живут.

Что же касается людей, то у них признаков программы старения еще меньше, чем у экспериментальных животных. Мы не умираем после размножения в одночасье, нет среди нас и долгоживущих «мутантов». Тем не менее сторонники теории запрограммированного старения не теряют надежды и продолжают поиски программы в наших генах.

С людьми в этом смысле все куда сложнее, чем с животными. Нельзя просто взять человека, отключить у него какой-нибудь ген и посмотреть, будет он жить дольше или нет. Нельзя скрещивать людей избирательно, чтобы получить у их детей интересующую ученых комбинацию генов. Поэтому приходится рассчитывать на то, что на земном шаре естественным путем уже скопилось достаточно разных генетических комбинаций, чтобы найти среди них какую-нибудь закономерность.

Основной метод, который для этого используют сейчас, — это полногеномный поиск ассоциаций (genome-wide association studies, GWAS). Ученые собирают последовательность геномов разных людей, а затем ищут связь между продолжительностью их жизни и отличиями в последовательности отдельных генов. Иными словами, пытаются построить модель, которая позволила бы предсказать срок жизни человека на основе тех вариантов генов, которые он несет в своих клетках.

Для этого нужна большая выборка — в тысячи, а лучше сотни тысяч людей. За ней ученые обычно обращаются в биобанки — это базы данных, которые составлены по результатам многолетних исследований. Обычно такие исследования преследуют совсем другую цель — например, соотнести образ жизни с риском развития болезней, — но заодно собирают у участников множество анализов, включая генетические. Поэтому в каждом банке можно найти информацию не только о продолжительности жизни людей и их генотипе, но и о множестве деталей их биографии. Но поскольку действительно больших банков не так много и собирают их в основном в развитых странах, то результаты, которые ученые с их помощью получают, несколько перекошены — например, мы уже немало знаем о генах, которые связаны с долгой жизнью у британцев и исландцев, а вот у народов Азии и Африки закономерности могут оказаться совсем другими.

Тем не менее таких исследований уже было немало, и на их основе можно сделать два важных вывода. Первый — оптимистичный: долголетие определенно наследуется. Это, конечно же, не новость: давно известно, что существуют целые семьи долгожителей — в тех же «голубых зонах». Теперь этому есть и официальные подтверждения: у потомков долгожителей, например, на 62% ниже риск смерти от всех причин, чем у контрольной группы того же года рождения, на 71% ниже риск смерти от опухолей и на 85% — от болезней сердца.

Но есть и пессимистичный вывод: единого «гена долголетия» или даже группы таких генов, судя по всему, не существует. Даже оставив в стороне случаи смерти от внешних причин и случайных заболеваний вроде эпидемий, мы не можем утверждать, что продолжительность жизни определяется только генами. Не можем мы и сказать, что долголетие напрямую от них зависит — если только речь не идет о мутациях, которые достоверно сокращают жизнь, вроде прогерии.

Поэтому сейчас принято говорить не о зависимостях, а о корреляциях, то есть статистических связях долголетия с теми или иными вариантами генов. И когда мы видим сообщение о том, что вариант номер 25 гена А коррелирует с долгой жизнью, не стоит радоваться раньше времени. Из этого факта, например, не следует, что если человек исправит ген А в своих клетках на нужный вариант (а это рано или поздно станет возможным), то обязательно проживет дольше, чем мог бы со своим исходным вариантом гена. Корреляция — это не причинно-следственная связь, а некоторая статистическая закономерность, которую еще предстоит объяснить. Например, может оказаться, что вариант номер 25 гена А распространен у потомков какой-нибудь знатной семьи, которые традиционно богаты и следят за своим здоровьем и поэтому живут дольше, — а любому другому человеку этот вариант гена никакой пользы не принесет.